【期刊信息】

Message

刊名:电子科技
曾用名:电子科技杂志
主办:西安电子科技大学
主管:中华人民共和国教育部
ISSN:1007-7820
CN:61-1291/TN
语言:中文
周期:月刊
影响因子:0.568824
被引频次:33042
数据库收录:
美国剑桥科学文摘(2013);期刊分类:电子信息

现在的位置:主页 > 综合新闻 >

iCANX Talks Vol.22︱ 未来的电子技术及其应用!(2)

来源:电子科技 【在线投稿】 栏目:综合新闻 时间:2020-09-10

作者:网站采编

关键词:

【摘要】竹井邦晴教授现为日本大阪府立大学教授,同时受聘为JST PRESTO 研究员。他的研究兴趣是基于无机、有机材料构建多功能、高性能柔性电子平台。竹井教授

竹井邦晴教授现为日本大阪府立大学教授,同时受聘为JST PRESTO 研究员。他的研究兴趣是基于无机、有机材料构建多功能、高性能柔性电子平台。竹井教授荣获FUNAI奖(2020)、MEXT青年科学家奖(2018)、MEXT的NISTEP研究员奖(2015年)、麻省理工学院技术评论的35位35岁以下创新者奖(2013)。他是《纳米研究快报》(施普林格)、《先进材料技术》(Wiley)、《科学报告》(NPG)和《应用表面科学进展》(Elsevier)等期刊的编委会成员。

Keywords

Flexible sensors柔性传感器

Circuits?电路

Internet of Things(LoT)物联网

Multiple sensing functional devices?多传感功能器件

Electronic skin???电子皮肤

Monitoring监测

Application?应用

报告2

Flexible mesostructure technologies: from soft mechanical metamaterials to 3D flexible electronics

柔性微结构技术:从软质力学超材料到三维柔性电子器件

Yihui Zhang

张一慧

Tsinghua University

清华大学

Abstract

Complex 3D mesostructures in biology (e.g., cytoskeletal webs, neural circuits, and vasculature networks) form naturally to provide essential functions in even the most basic forms of life.? Compelling opportunities exist for analogous 3D architectures in human-made devices, ranging from bio-integrated electronics, MEMS, to metamaterials and micro-robotics.? However, the development of artificial 3D soft materials and electronics with complex 3D geometries and/or mechanical properties that reproduce those of biological tissues is extremely challenging.? In this presentation, I will discuss a set of flexible mesostructure technologies for 3D architected materials and flexible electronics with customized geometries and mechanical properties.? In the first part, I will introduce a class of bio-inspired network designs to enable the development of biomimetic materials that can reproduce accurately nonlinear mechanical properties of soft biological tissues, as well as soft mechanical metamaterials with exotic effective properties (e.g., negative swelling, thermally-induced shear, negative Poisson’s ratios, etc.) that do not exist in conventional materials.? I will show a couple of examples to demonstrate the utility of these architected materials as important platforms of bio-integrated electronics.? In the second part, I will introduce a class of mechanics-guided assembly approaches that exploit controlled, compressive buckling, for constructing complex 3D micro/nanostructures rapidly from patterned 2D micro/nanoscale precursors.? The compatibility of these approaches with the state-of-the-art fabrication techniques in semiconductor industries, along with their versatile capabilities, provides enormous design options in the development of new functional 3D devices.? I will introduce the enabling applications in 3D flexible electronic systems, including reconfigurable antennas and wearable health-monitoring systems.

生物体自然生长所形成的复杂三维细微观结构(如细胞骨架网、神经回路和脉管网络)在最基本的生命活动中发挥着关键作用。在人造的器件中构建类似的三维微结构同样在众多前沿领域有着重要的应用前景,涵盖生物集成电子器件、微机电系统、超材料和微型机器人等。然而,发展具有类似于生物组织的复杂三维几何构型和/或优异力学性能的人造三维软质材料和电子器件是极具挑战性的。在本次讲座中,将介绍一系列柔性微结构技术,用以发展可定制几何构型和力学性能的三维结构材料和三维柔性电子器件。第一部分将介绍一类仿生网状软材料的设计方法,该方法既可用于实现能够精确再现生物软组织非线性力学行为的仿生材料,又可用于构建具有传统材料所无法实现的特殊性能(如负溶胀、热致剪切、负泊松比等)的软质力学超材料。报告中将展示多个典型的例子来说明这些结构化材料为生物集成电子器件的发展和应用提供了一个重要平台。第二部分将介绍一系列基于可控压缩屈曲变形的力学引导的三维组装方法,其适用于将图案化的二维微纳米级前驱体快速组装为复杂的三维微/纳米结构。这些方法与成熟的半导体制备工艺相兼容,并且具备独特的设计制备灵活性,为发展新型三维功能器件提供了大量的可设计选项。此外,将介绍基于该方法实现的一些三维柔性电子系统,包括可重构天线和可穿戴健康监测系统。

Biography

Yihui Zhang is a Professor of Engineering Mechanics at Tsinghua University.? His group ( is dedicated to addressing the grand challenges in the frontiers of science and technologies through creative uses of mechanics principles and cross-fertilization among diverse disciplines, which drives the development of new mechanics theories and computational models of advanced materials and structures, as well as novel designs and fabrication approaches of materials and systems with unprecedented properties.? A major focus of Dr. Zhang’s current research is the study of flexible mesostructure technologies for the development of soft architected materials that can reproduce and/or exceed the mechanical/physical properties of soft biological tissues, as well as 3D microelectronics that can offer new functionalities and/or enhanced performances.


文章来源:《电子科技》 网址: http://www.dzkjzz.cn/zonghexinwen/2020/0910/356.html


上一篇:光电子技术——进击的半导体突破口
下一篇:杭州电子科技大学与临安签订技术转移中心协议